Journal of the European Ceramic Society 20 (2000) 195-199

Sintering behavior of Cr₂O₃–Al₂O₃ ceramics

Takehiko Hirata*, Katsunori Akiyama, Hirokazu Yamamoto

Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 8-1 Sachiura 1-chome, Kanazawa-ku, Yokohama, 236-8515, Japan

Received 18 January 1999; received in revised form 26 March 1999; accepted 11 May 1999

Abstract

We investigated the sintering behavior of Cr_2O_3 -Al₂O₃ ceramic materials. In our observation of the isothermal shrinkage behavior of Cr_2O_3 -Al₂O₃ ceramic, the activation energy of sintering reaction was measured to be 102 kJ/mol, that is, the near value of the activation energy of diffusion of Al ions in Al₂O₃ single crystal. Therefore the diffusion of cations is believed to control the sintering behavior of this material. With the addition of TiO₂, (the compound chosen to accelerate the diffusion of cations) to Cr_2O_3 -Al₂O₃, the sintering behavior was accelerated. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Al₂O₃-Cr₂O₃; Microstructure-final; Sintering

1. Introduction

Due to their low solubility in molten salts formed in energy plants¹ such as V_2O_5 and Na_2SO_4 , Cr_2O_3 – Al_2O_3 are expected to possess superior corrosion resistance against these molten salts.² The corrosion resistance of ceramics is believed to depend not only on their solubility, but also on the relative density of the sintered body.³ Therefore it is necessary to obtain Cr_2O_3 – Al_2O_3 ceramics with dense sintered bodies. Cr_2O_3 and Al_2O_3 forms solid solutions over the entire range of composition, indicated in Fig. 1.⁴ So, we can obtain specimens with any composition.

 Cr_2O_3 is not stable and changes to CrO_3 in an atmosphere whose oxygen partial pressure is relatively high such as air.⁵ CrO_3 exhibits a high vapor pressure, so it is difficult to obtain a dense sintered body of Cr_2O_3 in an air atmosphere.⁵ In order to obtain a dense sintered body of Cr_2O_3 , the sintering should be performed in an atmosphere with a low oxygen partial pressure in which Cr_2O_3 remains stable.⁶ In an investigation with Cr_2O_3 – Al_2O_3 ceramics, Uematsu et al.⁷ have shown that the sintering of these ceramics in an atmosphere with a controlled pressure is effective in increasing relative density, especially for those with a high Cr_2O_3 – Al_2O_3 ceramics in a H_2 atmosphere and obtained a relative density of 90% for alloys with a Cr_2O_3 content of 10 mol% or more. They mentioned that with a Cr_2O_3 content of 10 mol% or less, relative density did not increase up to 85%.

Yamaguchi et al.⁸ have shown that the relative densities of Cr_2O_3 -Al₂O₃ ceramics with a Cr_2O_3 content of 90 mol% or more increase up to 95% when they are sintered in the carbon powder. They also mentioned that with a Cr_2O_3 content of 85 mol% or less, relative density did not increase up to 90%.

In the present work, we investigated the sintering behavior of Cr_2O_3 - Al_2O_3 ceramics in various atmospheres. Next, we looked at the effect of the addition of TiO_2 as a sintering aid in order to obtain a dense sintered body with a relative density of 95% or more for all Cr_2O_3 contents.

2. Experimental procedures

The raw powders used were Cr_2O_3 (Nihon Kagaku Kogyo Ltd.; α - Cr_2O_3 ; purity, 99%; average particle size, 0.2 µm), Al₂O₃ (Showa Denko Ltd.; α -Al₂O₃; purity, 99.9%; average particle size, 0.2 µm), and TiO₂ (synthesized from Ti alchoxide; average particle size, 0.02 µm). These powders were mixed by ball-milling in ethanol for 100 h with small amounts of additives for homogeneous mixing. Then, the powder–ethanol mixture was dried in an oven at 80°C. The derived powder

^{*} Corresponding author. Tel.: +81-45-771-1222; fax: +81-45-771-3879. *E-mail address:* hirata@atrc.mhi.co.jp (T. Hirata).

^{0955-2219/00/\$ -} see front matter \odot 2000 Elsevier Science Ltd. All rights reserved. PII: S0955-2219(99)00161-2

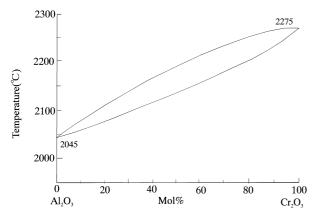


Fig. 1. Phase relationship between Cr₂O₃ and Al₂O₃.

was pressed into disks of about 20 mm in diameter and 5 mm in thickness. These compacts were sintered for 3 h at various temperatures in both air and a vacuum. The densities of the sintered bodies were derived from their weights and volumes. The relative densities were calculated using the calculated values derived from the composition of the sintered bodies and the theoretical density of Cr_2O_3 , Al_2O_3 , and TiO_2 (5.22, 3.98, and 4.70 g/cc, respectively).

The isothermal shrinkage behavior was measured by a thermal mechanical analyzer (TMA, Shinagawa Shiro Renga Ltd., Model: SL-1600B) at various temperatures in both air and a vacuum. The phases included in the sintered bodies were examined by XRD (Rigaku Ltd., Model: Rotaflex RU-300, operating conditions: 40 kV, 100 mA). The microstructures of the specimens were observed by an optical microscope (OM, Olympus Ltd., Model: VANOX-T) and a scanning electron microscope (SEM, JEOL Ltd., Model: JSM-T330A).

3. Results and discussion

Fig. 2 shows the relationship between the sintering temperature and the relative density of Cr_2O_3 -Al₂O₃ ceramics sintered in air. The relative density of a Cr_2O_3 -Al₂O₃ ceramic with a low Cr_2O_3 content increases when the sintering temperature increases. At a temperature of 1600°C it exhibits a relative density of 95%. Whereas, as the Cr_2O_3 -Al₂O₃ content increases, the relative density of the Cr_2O_3 -Al₂O₃ ceramic decreases. When the Cr_2O_3 content becomes 50 mol% or more, the sintered bodies do not become dense in air. Therefore the presence of Cr_2O_3 is believed to prevent the densification of Cr_2O_3 -Al₂O₃ compact. It was shown that pure Cr_2O_3 does not become dense because its sintering mechanism is the vaporization and condensation of Cr_2O_3 .⁵

Fig. 3 shows the isothermal shrinkage behavior of 50 mol $^{\circ}$ Cr₂O₃-Al₂O₃ in air. The shrinkages have the

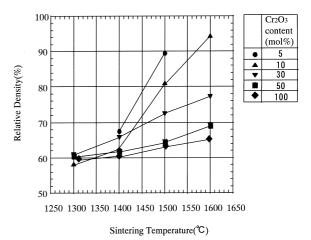


Fig. 2. Relationship between the relative densities of Cr_2O_3 -Al $_2O_3$ ceramics and the sintering temperature (in air).

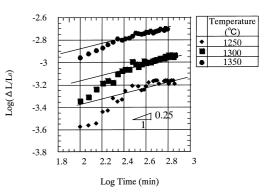
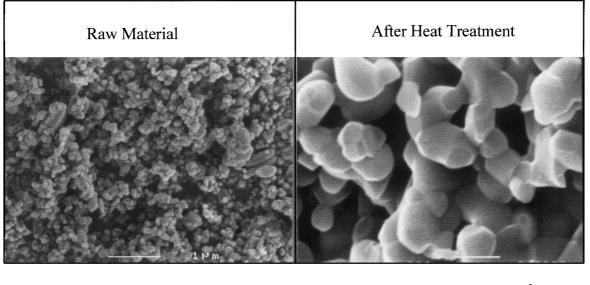



Fig. 3. Isothermal shrinkage behavior of 50 mol% $\rm Cr_2O_3\text{--}Al_2O_3$ in an air.

initial curved portion, indicated by Moriyoshi et al.⁹ Then, the shrinkages are proportional to the time raised to the power of 0.25, which indicates that the grain boundary diffusion of the ions controls the sintering behavior.¹⁰ Photo 1 shows scanning electron micrographs of the Cr₂O₃-Al₂O₃ powder before and after the heat treatment at a temperature of 1400°C in air. After heat treatment, a remarkable dimension change was observed without any shrinkage. We consider that this coarsening of Cr₂O₃-Al₂O₃ powder prevents densification of Cr_2O_3 -Al₂O₃ compact bodies. It was shown that Cr_2O_3 changes to CrO_3 at high temperatures in air and that the CrO₃ would then vaporize because of the high partial pressure of the CrO₃.⁵ As for Cr₂O₃-Al₂O₃, the vapor pressure becomes higher than that of A1₂O₃ because of the high CrO₃ vapor pressure.¹¹ Therefore, we consider that the vaporization and condensation of Cr₂O₃-Al₂O₃ will coarsen Cr₂O₃-Al₂O₃ powder, when it is heated in air. Therefore, under a condition in which

<u>1 µm</u>

Photo 1. Dimension change of 50 mol% Cr₂O₃-Al₂O₃ powder during heat treatment (temperature, 1450°C; holding time, 3 h; atmosphere, air).

the Cr_2O_3 is stable, we can obtain dense Cr_2O_3 -Al₂O₃ sintered bodies.

Fig. 4 shows the relationship between sintering temperature and relative density of Cr_2O_3 -Al₂O₃ ceramic sintered in a vacuum. At all Cr_2O_3 contents, the relative density increases up to 95%. Photo 2 shows the microstructures of Cr_2O_3 -Al₂O₃ ceramics sintered at 1550°C. We can observe hardly any pores in the sintered bodies. Cr_2O_3 -Al₂O₃ compact bodies were sintered in a furnace with carbon heating elements in the vacuum. Since the total pressure of gases is about 10^{-2} Torr and oxygen is removed by the carbon of the heating elements of the furnace, the oxygen partial pressure seems very low. So, in this vacuum the Cr_2O_3 powder is prevented.

Fig. 5 shows the isothermal shrinkage behavior of the 50 mol% Cr_2O_3 -Al₂O₃ compact in a vacuum at various temperatures. The dependence of shrinkage on heating time has a slope of 0.25, i.e. the same as that of the isothermal shrinkage behavior in the air atmosphere. Therefore the same process can be assumed to control the sintering behavior in both the air and vacuum and this process is prevented by the coarsening of Cr_2O_3 -Al₂O₃ in air. Fig. 6 shows the dependence of the rate constant of the sintering behavior on the reciprocal of the temperature. The activation energy of the sintering process derived from this figure is 102 kJ/mol. This value is almost the same as that of the diffusion of Al ions in Al₂O₃ lattice.¹²

Therefore we assume that the diffusion of cations controls the sintering process of Cr_2O_3 -Al₂O₃ ceramics.

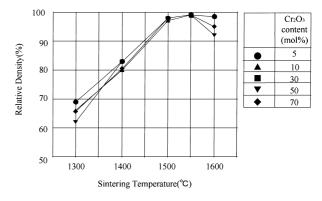


Fig. 4. Relationship between the relative densities of Cr_2O_3 -Al₂O₃ ceramics and the sintering temperature (in a vacuum).

That is, by accelerating the diffusion of cations, we can obtain a denser sintered body of Cr_2O_3 -Al₂O₃ ceramic. In order to accelerate the diffusion of cations, we need to increase cation vacancies. As a means to do so, the addition of impurities with cations of larger valences is well known to be effective.¹³ As an additive, we chose TiO₂ which has cations of four plus valence.

Fig. 7 shows the relationship between the relative density of Cr_2O_3 -Al₂O₃ with TiO₂ and the sintering temperature. The addition of TiO₂ to Cr_2O_3 -Al₂O₃ decreases the temperature for densification about 100°C compared to that of Cr_2O_3 -Al₂O₃. W. D. Callister et al. showed that the densification of Cr_2O_3 promoted by adding TiO₂.¹⁴ They assumed the creation of cation vacancies enhanced the densification of Cr_2O_3 . In this

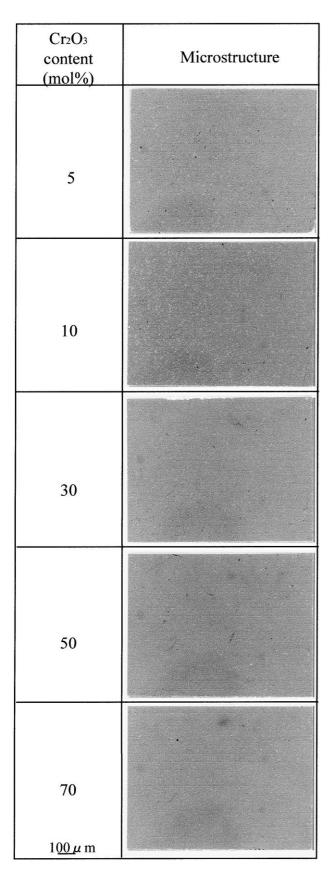


Photo 2. Microstructures of $Cr_2O_3\text{--}Al_2O_3$ ceramics sintered in a vacuum at 1550°C.

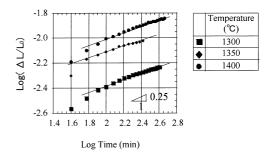


Fig. 5. Isothermal shrinkage behavior of 50 mol% $Cr_2O_3\text{--}Al_2O_3$ in a vacuum.

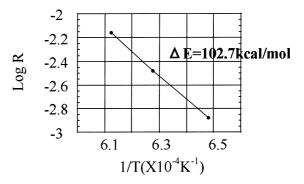


Fig. 6. Dependence of the rate constant on temperature (50 mol%) Cr_2O_3 -Al₂O₃; atmosphere: vacuum; ΔE denotes the activation energy of sintering).

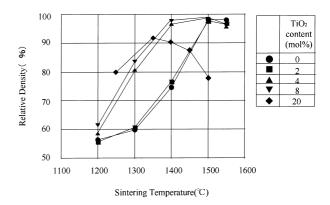


Fig. 7. Relationship between sintering temperatures and the relative density of 50 mol% Cr_2O_3 -Al₂O₃ ceramics with constituent TiO₂ as a sintering aid (in a vacuum).

work, it is also considered that cation vacancies were made by adding TiO₂ to Cr_2O_3 -Al₂O₃ and the Cr_2O_3 -Al₂O₃ ceramics were then thought to become the dense sintered bodies at the lower temperature. Relative density increases up to 8 mol% TiO₂. When 20 mol% TiO₂ is added, the relative density decreases. Fig. 8 shows XRD (X-ray diffraction) pattern of sintered bodies with 0, 4, 8 and 20 mol% TiO₂. From 0 to 8 mol%TiO₂, the XRD pattern exhibits peaks only from Cr_2O_3 -Al₂O₃. However, in the sintered body with 20 mol% TiO₂, peaks are observed from (Al,Cr)₂Ti₇O₁₅. Therefore the formation of (Al,Cr)₂O₃-TiO₂ compound is believed to prevent the densification of Cr_2O_3 -Al₂O₃ compacts.

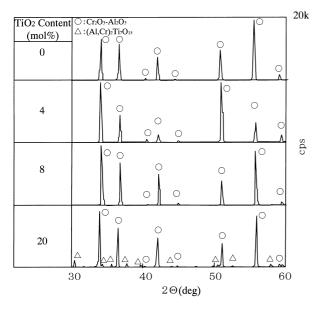


Fig. 8. Dependence of the X-ray diffraction pattern of 50 mol% Cr_2O_3 -Al₂O₃ ceramics on TiO₂ content.

4. Conclusions

In this work, we investigated the sintering behavior of Cr_2O_3 -Al₂O₃ ceramics in various atmospheres. We obtained the following results:

- In the air atmosphere, Cr₂O₃-Al₂O₃ ceramic exhibits remarkable coarsening of its particles at sintering temperatures due to vaporization and condensation of Cr₂O₃. Therefore we cannot obtain a dense Cr₂O₃-Al₂O₃ sintered body under this condition.
- 2. In our observation of the isothermal shrinkage behavior of Cr_2O_3 -Al₂O₃ ceramic in a vacuum, the activation energy of the sintering reaction was 102 kJ/mol. Since this value is almost equal to the activation energy of diffusion of Al ions in Al₂O₃ single crystal, the diffusion of cations is believed to control the sintering behavior of this material.

- 3. With the addition of TiO_2 , the compound chosen to accelerate the diffusion of cation, to Cr_2O_3 - Al_2O_3 , the sintering behavior was accelerated.
- 4. Adding TiO₂ up to 8 mol% accelerated the shrinkage at lower temperatures. When the TiO₂ content became higher than 20 mol%, the relative density of the sintered body decreased due to formation of (Al, Cr)₂O₃-TiO₂ compound.

References

- Grabke, H. J., Hot corrosion the experience from metals and intermetallics. In *Corrosion of Advanced Ceramics Measurement and Modelling*, ed. K. G. Nickel. Kluwer Academic, Dordrecht, The Netherlands, 1994, pp. 223–234.
- Rapp, R. A., Hot corrosion of materials. In Selected Topics in High Temperature Chemistry: Defect Chemistry of Solids, ed, O. Johannesen. Elsevier, 1989, pp. 291–329.
- Nishida, K. and Komeya, K., Corrosion resistivity of ceramics, *Boshoku Gijutsu*, 1986, 35, 646–655.
- Bunting, E. N., Phase equilibria in the system Cr₂O₃–Al₂O₃. Bureau of Standards Journal of Research, 1931, 6, 947–949.
- Graham, H. C. and Davis, H. H., Oxidation/vaporization kinetics of Cr₂O₃. J. Am. Ceram. Soc., 1971, 54, 89.
- Ownby, P. D. and Jungquist, G. E., Final sintering of Cr₂O₃. J. Am. Ceram. Soc., 1972, 55, 433.
- Uematsu et al., Sintering behavior and mechanical properties of the Al₂O₃-Cr₂O₃ solid solution. *Nippon Kagaku Kaishi*, 1981, 4, 509–515.
- Yamaguchi et al., Sintering of powder compacts containing Cr₂O₃. *Yogyo-kyokai-Shi*, 1982, **90**, 68–73.
- 9. Moriyoshi, Y., Kinetics of initial sintering with grain growth. J. Am. Ceram. Soc., 1970, 53, 671.
- Johnson, D. L. and Cutler, I. B., Diffusion sintering: I, initial stage sintering models and their application to shrinkage of powder compacts. J. Am. Ceram. Soc., 1963, 46, 541.
- 11. Sata et al., Effect of surface sintering on vaporization rate of multicomponent oxide. *Proc. of International symposium of Factors in Densification and Sintering of Oxide and Non-oxide Ceramics*, 1978, 182.
- 12. Paladino, A. E., Aluminum ion diffusion in aluminum oxide. J. Chem. Phys., 1962, **37**, 957–962.
- 13. Fisher, B., Electrical properties of cobalt monoxide. J. Chem. Phys., 1966, 44, 1663–1672.
- 14. Callister, W. D. et al., Sintering chromium oxide with the aid of TiO₂. J. Am. Ceram. Soc., 1979, **62**, 208–211.